Følner sequence

Author
Affiliation

Kai Prince

The University of Manchester

Published

14 August 2025

1 Følner Sequences

Definition 1 We define a right-Følner sequence in \(\Group\) as a sequence \(\Folner =(\Folner[N])_{N\in\mathbb{N}}\) of finite subsets of \(\Group\) satisfying \[\lim_{N\rightarrow\infty}\frac{\CountingMeasure{\GroupOperation{(\GroupOperation{\Folner[N]}{\Inverse{\GroupElement}})}{\Folner[N]}}}{\CountingMeasure{\Folner[N]}}=1,\] for all \(\GroupElement\in\Group\).

Definition 2 Similarly, we define a left-Følner sequence in \(\Group\) as a sequence \(\Folner =(\Folner[N])_{N\in\mathbb{N}}\) of finite subsets of \(\Group\) satisfying \[\lim_{N\rightarrow\infty}\frac{\CountingMeasure{(\Inverse{\GroupElement}\cdot\Folner[N])\cap\Folner[N]}}{\CountingMeasure{\Folner[N]}}=1,\] for all \(\GroupElement\in\Group\).

Definition 3 We call a sequence in \(\Group\) a Følner sequence if it is both a left and right Følner sequence.

1.1 Alternative definitions for Monoids

Definition 4 Let \(\Monoid\) be a countably-infinite left-cancellative monoid with discrete topology. We define a left-Følner sequence in \(\Monoid\) as a sequence of finite subsets \(\Folner =(\Folner[N])_{N\in\mathbb{N}}\) satisfying \[\lim_{N\rightarrow\infty}\frac{\CountingMeasure{\MonoidOperation{(\MonoidOperation{\MonoidElement}{\Folner[N]})}{\Folner[N]}}}{\CountingMeasure{\Folner[N]}}=1\] for all \(g\in M\).

Definition 5 Similarly, for a countably-infinite right-cancellative monoid with discrete topology \(\Monoid\), we define a right-Følner sequence in \(\Monoid\) as a sequence of finite subsets \(\Folner =(\Folner[N])_{N\in\mathbb{N}}\) satisfying \[\lim_{N\rightarrow\infty}\frac{\CountingMeasure{\MonoidOperation{(\MonoidOperation{\Folner[N]}{\MonoidElement})}{\Folner[N]}}}{\CountingMeasure{\Folner[N]}}=1\] for all \(g\in M\).

1.2 Equivalent definitions using Set Differences

Equivalent definitions can be constructed by using set differences instead of intersections.

For example, the equivalent definition of a left-Følner sequence, \(\Folner\), in \(\Monoid\) requires \[\lim_{N\rightarrow\infty}\frac{\CountingMeasure{(\MonoidOperation{\Folner[N]}{\MonoidElement})\triangle\Folner[N]}}{\CountingMeasure{\Folner[N]}}=0, \] to be satisfied for all \(\MonoidElement\in\Monoid\).

This alternative definition will be useful when looking at proving some of the properties of density.

2 Tempered Følner Sequences

Definition 6 (Lindenstrauss (2001), Definition 1.1) A sequence of sets \(\Folner=(\Folner[N])_{N\in\mathbb{N}}\) will be said to be tempered if, for some \(b>0\) and all \(n\in\mathbb{N}\),

\[ \CountingMeasure{\bigcup_{1\leq k<N}\Folner[k]^{-1}\Folner[N]}\leq b\CountingMeasure{\Folner[N]}. \tag{1}\]

is referred to as the Shulman condition.

Proposition 1 (Lindenstrauss (2001), Proposition 1.4)  

  1. Every Følner sequence \(\Folner=(\Folner[N])_{N\in\mathbb{N}}\) has a tempered subsequence.
  2. Every amenable group has a tempered Følner sequence.

References

Lindenstrauss, E. (2001). 'Pointwise theorems for amenable groups', Inventiones mathematicae, 146 (2), pp. 259–295. https://doi.org/10.1007/s002220100162.